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Abstract. We show how quasi-continuum methods can be used to construct approximate solutions
of nonlinear differential delay equations derived from symmetry reductions of the discrete nonlinear
telegraph equation. Travelling wave solutions are proven to exist and the existence of solutions
to two other symmetry reductions are studied. Two of the less familiar reductions are studied;
the first supports both a one-parameter family of single-pulse solitary-wave-type solutions and a
one-parameter family of periodic waves. The size and shape of these waves are examined using the
quasi-continuum technique; this approximates the differential-difference equation with a higher-
order differential equation, which is integrated and analysed using phase plane techniques. In the
large-amplitude limit, the shape of the pulse approaches a limiting form which has a corner at
its peak. The manner of this approach is elucidated using matched asymptotic expansions. The
second reduction, though differing only by the addition of a single term, appears not to support the
solitary-wave type of solution—even in the limit where the additional term is premultiplied by an
asymptotically small constant.

1. Introduction

In [10] Ody et al analyse a transmission line composed of inductors (with inductance L)
and capacitors (with voltage-dependent capacitance C(V )). Denoting the electrical potential
(voltage) at the nth node by un(t), the governing equation

L
d

dt

[
C(un)

dun
dt

]
= un+1 − 2un + un−1 (1.1)

is derived. Ody et al then investigate the types of solutions supportable by the system through
seeking symmetry reductions of this system of equations. In this paper we analyse these
reductions in more detail, using quasi-continuum approximations. The relevant theory of
electrical transmission lines is reviewed by Remoissenet [11].

One reduction leads to travelling waves (un(t) = u(n− ct) = u(z)), whose form satisfies
a nonlinear differential delay equation; whilst other reductions also lead to differential delay
equations. Here, we concentrate on the latter, more general reductions and show how analytical
methods designed for travelling wave equations can also be applied to a new scenario, yielding
both rigorous information on the existence of certain types of solutions, and approximations
to their shape.

0305-4470/00/335925+20$30.00 © 2000 IOP Publishing Ltd 5925
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We concentrate on the reductions from (1.1) to

case A: a2

(
w(z)

d2w

dz2
− 2

(
dw

dz

)2
)

= 1
3w

3δ2w(z)3 (1.2)

case B: a2

(
w(z)

d2w

dz2
− 2

(
dw

dz

)2
)

= w(z)2 + 1
3w

3δ2w(z)3 (1.3)

where δ2f (z) = f (z+1)−2f (z)+f (z−1) is the central second-difference operator, and a is
a parameter. These reductions arise from LC(u) = u−4/3, where z = x + a/t and u = w3/t3,
which leads to case A; and, z = x − a tan−1 t and u = w3/(t2 + 1)3/2, which leads to case B.
In both of these cases the substitution φ(z) = 31/4a1/2/w(z) simplifies the problem. In the
former equation, this completely removes the parameter a from the problem. We shall thus
study the problems in the form:

case A:
d2φ

dz2
+ δ2

(
1

φ(z)3

)
= 0 (1.4)

case B:
d2φ

dz2
+ δ2

(
1

φ(z)3

)
+
φ(z)

a2
= 0. (1.5)

Formally, case A corresponds to the a → ∞ limit of case B, and one might thus expect
solutions of case B to yield leading-order approximations to solutions of case A in the limit
a → ∞; however, this is not the case. We show that case A supports both periodic-wavetrain
solutions and solitary-wave solutions, but that case B cannot support solitary waves; however,
a small-amplitude analysis suggests that periodic solutions may exist.

The theorem proved by Friesecke and Wattis [9] rigorously establishes the existence of
solitary travelling wave solutions to (1.1) and of more general single-pulse solutions of case A
(1.2). These results are detailed in section 2, along with the non-existence of single-pulse
and periodic solutions to case B (1.3). The approximate solutions of case A are detailed in
section 3, where approximate forms for both solitary and periodic waves are constructed. The
paper concludes with a discussion of the results.

The other reductions considered by Ody et al in [10] yield equations which are not
amenable to quasi-continuum analysis, so these equations are not considered further here. This
paper illustrates this fact in that case A is more amenable to quasi-continuum techniques than
case B, since higher-order approximations to case A can be reduced to second-order ordinary
differential equations than for case B (although this property is somewhat overshadowed and
complicated by the fact that case B does not possess solitary-wave solutions, whilst case A
does).

1.1. The quasi-continuum method

The second difference operator defined after equation (1.3) makes rigorous and accurate
mathematical analysis difficult due to its non-local form. Approximate equations can
be gained by replacing it with a local derivative operator; in the simplest and crudest
approximation it is replaced by a second derivative. The quasi-continuum approximation
technique makes use of higher-order derivatives to form more accurate approximations of
the discrete difference operator via Padé approximates. These techniques were developed in
[2, 14] to find approximate solutions to differential delay equations arising in the study of
solitary waves on lattices (for example, the Fermi–Pasta–Ulam (FPU) lattice [6]†). They are

† The work was actually carried out in Los Alamos in 1959 and initially only written up as an internal report.
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generalizations of a technique used by Rosenau [13], which replaced the system of ordinary
differential equations by a single partial differential equation, and have since been widely
applied to more general systems involving multiple delays and advances [16], and systems
with on-site potentials [17].

Formally, the technique replaces a discrete-difference operator with a high-order
differential operator, using the identity

δ2 = exp (∂z)− 2 + exp (−∂z) (1.6)

one finds

δ2 = ∂2
z + 1

12∂
4
z + 1

360∂
6
z + · · · . (1.7)

The simplest continuum approximation corresponds to the (2, 0) Padé approximation (δ2 �
∂2
z ). However, in many cases the (4, 0), the (2, 2) and even the (4, 2) approximates are solvable

and give more accurate solutions. These correspond to replacing the second-difference operator
with (

1 + 1
12∂

2
z

)
∂2
z

(
1 − 1

12∂
2
z

)−1
∂2
z

(
1 − 1

30∂
2
z

)−1(
1 + 1

20∂
2
z

)
∂2
z (1.8)

respectively. In the subsequent sections we concentrate on solving the differential equations
resulting from the application of these approximate operators (1.8). See [14] for further details
of the approximation process and an analysis of its accuracy.

All the ensuing approximations that we analyse in detail are second-order autonomous
ordinary differential equations of the form φ′′(z) = F(φ(z), φ′(z)), and are thus amenable
to phase plane techniques. The exploitation of these geometric techniques requires the
replacement of the single equation with a pair of first-order equations (φ′ = χ , χ ′ = F(φ, χ)),
and then equilibrium points to be found (where φ′ = 0 = χ ′). In our case, these points
correspond to constant solutions φ(z) = φc satisfying F(φc, 0) = 0. A study of the linearized
system near these points yields information concerning the structure of phase space. In the
examples studied below these fall into one of two categories: (a) centres, in which trajectories
close to the stationary point φ(t) = φc form closed curves in phase space (φ′(z) versus
φ(z)), which correspond to periodic oscillations in φ(z); and, (b) saddles, where there is an
unstable and a stable direction. A saddle point in phase space will generate a solitary wave
in φ(z) if the unstable manifold meets the stable manifold smoothly, in the examples studied
here this property can be verified. Since our system is Hamiltonian, it conserves energy; the
approximation techniques we use maintain this important property, thus an energy integral can
be found, E = E(φ, χ) = E(φ, φ′). The trajectories in phase space are then level sets of
the energy function, and so it can be proven that the unstable and stable manifolds of a saddle
meet smoothly. The energy integral enables the exact location of the homoclinic connection
to be determined in (φ, φ′)-space, and hence the problem is reduced to a first-order nonlinear
ordinary differential equation (E(φ(z), φ′(z)) = E(φc, 0)). In (z, φ)-space, the homoclinic
trajectory corresponds to a solitary wave, which decays to a constant in the limit z → ±∞,
where φ → φc and χ = φ′ → 0. The amplitude of the wave can be found by solving
E = E(φ0, 0) with φ0 	= φc.

2. Existence results

The existence theorem of Friesecke and Wattis [9] states that the system of ordinary differential
equations

d2φn(t)

dt2
= V ′(φn+1(t))− 2V ′(φn(t)) + V ′(φn−1(t)) (2.1)
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supports travelling solitary-wave solutions satisfying the differential delay equation

c2φ′′(z) = V ′(φ(z + 1))− 2V ′(φ(z)) + V ′(φ(z− 1)) (2.2)

provided that the nonlinear nearest-neighbour interaction potential V (φ) satisfies: (a) the
ratio V (φ)/φ2 increases strictly with |φ| for all φ ∈ � where � = (−∞, 0) = R

− or
� = (0,∞) = R

+; and (b)

V (φ) = 1
2V

′′(0)φ2 + ε|φ|p + o(φp) as φ ∈ � φ → 0 (2.3)

for some ε > 0, where V ′′(0) � 0 and 2 < p < 6 (although, it is anticipated that the condition
p < 6 can be relaxed, at the expense of a more technical proof). Supersonic (c2 > V ′′(0))
solitary waves of single sign then exist (φ > 0 if� = R

+ and φ < 0 if� = R
−). If condition

(a) holds and (b) fails, then solitary waves exist with potential energies above some threshold
(
∫
V (φ(z)) dz > K0); if (b) holds as well as (a), then it is known that K0 = 0, and so solitary

waves of arbitrarily small size exist. We now apply this result to the lattice equation (1.1) and
to the reduction to case A (1.4).

2.1. Travelling wave solutions

The travelling wave solution of (1.1) satisfies

c2 d

dz

[
C(u(z))

du

dz

]
= u(z + 1)− 2u(z) + u(z− 1) (2.4)

which for general functionsC(u) can be recast as (2.2) byφ = C̃(u), where C̃ ′(u) = C(u); then
V ′(φ) = u = C̃−1(φ) and V (φ) = ∫ φ0 C̃−1(ϕ) dϕ. We then need to check that V (φ) satisfies
the conditions of strict monotonicity and (2.3). The condition V ′′(0) � 0 implies C(0) � 0.
In the special case where C(u) is given by a simple power law, as in C(u) = C0(q + 1)uq , we

find C̃(u) = C0u
q+1 and V ′(φ) = u = [φ/C0]1/(q+1), which implies V (φ) = q+1

q+2 C
−1
q+1

0 φ
q+2
q+1 .

Thus for the existence theorem to apply, we need − 4
5 < q < 0, although we expect the result

to hold for −1 < q < 0. Since V ′′(0) = 0, the waves exist for all speeds c > 0. In these
cases φ and hence u → 0 as z → ±∞. If q < −1, as is the case in [10] where q = − 4

3 , the
potential energy function is not compatible with decay to zero as z → ±∞.

2.2. Pulse solutions of case A

The existence theorem can also be applied to case A (1.2), proving the existence of a one-
parameter family of solutions whose amplitudes lie within certain bounds. The interpretation
of parameters differ from that given above, the result being applicable following a reformulation
of the problem. We define φ(z) = φ∞ − φ̂(z), with φ̂(z) → 0 as z → ±∞; so that a wave
φ(z) which decays to the constant φ∞ in the limits z → ±∞, and has amplitude φ̂(0). We
define a potential energy function V (φ̂) by

V (φ̂) = 1

2(φ∞ − φ̂)2
− φ̂

φ3∞
− 1

2φ2∞
(2.5)

so thatV ′′(0) = 3/φ4
∞ > 0, p = 3 and ε = 2/φ5

∞ in (2.3). ThenV (φ̂)/φ̂2 is strictly increasing
on 0 � φ̂ < φ∞, over which V (φ̂), and V ′(φ̂) vary from zero to +∞. Since a solution to
equation (1.2) must be continuous and differentiable, φ̂ cannot stray into the region φ̂ > φ∞;
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hence the existence theorem guarantees the existence of a one-parameter family of solitary-
wave solutions to the problem (2.2) with c2 > V ′′(0) = 3/φ4

∞. This problem can be rewritten
in terms of φ(z) as

c2 d2φ

dz2
− δ2

(
1

φ(z)3

)
= 0. (2.6)

Thus we are interested in the existence of a solution with c2 = 1, which requires φ∞ > 31/4.
The quantity V (φ̂)/φ̂2 increases monotonically for φ̂ > 0 (and not for φ̂ < 0), thus solitary
waves φ(z) satisfy φ(z) < φ∞.

3. Form of solutions in case A

Simply approximating the second difference operator by a second derivative (the leading-order
expansion of (1.6)), we find

d2φ

dz2
+

d2

dz2

(
1

φ(z)3

)
= 0 (3.1)

which can be completely integrated to

φ(z) +
1

φ(z)3
= Az + B (3.2)

hence φ satisfies a quartic equation. It is straightforward to visualize the solution by plotting z
as a function of φ, (z = z(φ)). This shows that, when A 	= 0, there is no solution connecting
the limits z → −∞ and z → +∞ in a continuous manner, as no value of φ makes the
right-hand side vanish, which is required when z = −B/A. There is only the trivial solution
φ(z) = φB , which satisfies the case A = 0, B = φB + 1/φ3

B . Thus it is necessary to use one of
the higher-order quasi-continuum expansion methods to find how solutions to case A behave.

In case A, all terms have either a second difference or a second derivative operator acting
on them. Since all continuum expansions contain a factor of ∂2

z , the approximating equations
can always be immediately integrated twice to reduce their order by two. This reduces fourth
derivative terms to second derivatives, leading to problems which are amenable to phase plane
techniques and, in some cases, complete integration.

3.1. The (4, 0) Padé approximation

In this case we approximate the second difference operator by ∂2
z + 1

12∂
4
z , yielding

1

12

d2

dz2

(
1

φ(z)3

)
+ φ(z) +

(
1

φ(z)3

)
= Az + B (3.3)

after two integrations with respect to z. We cannot deal with the fully general case, in which
both A and B are arbitrary, thus we restrict ourselves to A = 0 and describe the form of
solutions in this case, leaving B as an arbitrary constant. The substitution ψ = 1/φ3 yields

1

12

d2ψ

dz2
+ ψ(z) + ψ(z)−1/3 = B. (3.4)

So that in the (ψ,ψ ′) phase plane there is a critical point at (ψB, 0), we assign the constant B
by B = ψB + ψ−1/3

B . This critical point is a saddle if ψB < 3−3/4 and a centre if ψB > 3−3/4.
Letting φB = ψ

−1/3
B we gain the condition for a solitary wave to exist is 0 < φB < 31/4, where
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φ(z) → φB as z → ±∞. For φB > 31/4, periodic waves which oscillate around φ = φB
exist. As φB varies over the range 0 < φB < ∞, B = φB + φ−3

B covers B > 4/33/4 ≈ 1.755.
Since (3.3) is symmetric under φ → −φ, B → −B, the range B < −4/33/4 is covered by
φB < 0. Thus the range |B| < 4/33/4 is not parametrized by φB , for these values of B, there
are no critical points in the phase plane of (3.4).

3.1.1. Pulse-like solution of the (4, 0) approximation. First, we shall seek solitary pulse-
wave solutions to this equation with the property that ψ → ψB < 3−3/4 and ψ ′ → 0 as
z → ±∞ by substitutingψ(z) = ψB(1+θ(z)), where θ(z) is subject to the limiting behaviour
θ(z), θ ′(z) → 0 as z → ±∞. The determining equation for θ(z) is thus

1

12

d2θ

dz2
+ θ(z) +

1

ψ
4/3
B (1 + θ(z))1/3

− ψ
−4/3
B = 0 (3.5)

which can be integrated to

1
36ψ

4/3
B

(
dθ

dz

)2

= 1 + 2
3θ(z)− (1 + θ(z))2/3 − 1

3ψ
4/3
B θ(z)2 =: F(θ). (3.6)

The left-hand side of this expression is clearly positive, being the product of squared terms;
we define the right-hand side of (3.6) to be F(θ). Thus the only physically relevant values
of θ are those which satisfy F(θ) � 0. The function F(θ) has a double zero at θ = 0, with
F(θ) → 0+ as θ → ±∞; a result which is consistent with exponential decay in the tail of the
solitary wave. For small θ , F(θ) � 1

9 (1 − 3ψ4/3
B )θ2, confirming the need for ψB < 3−3/4.

The amplitude of the solitary wave is also determined by θ ′(z) = 0, implying the existence of
another root of F(θ). For large-θ , the quadratic term will dominate, and make F(θ) negative
(F(θ) ∼ − 1

3ψ
4/3
B θ2). SinceF(θ) is continuous, there will be some value of θ , which we define

as θ0 whereF(θ0) = 0. Exact values for the amplitude (θ0) of the solitary-wave solution satisfy

1 + 2
3θ0 − (1 + θ0)

2/3 = 1
3ψ

4/3
B θ2

0 (3.7)

which, for small ψB , gives either a large positive value for θ0 or an O(1) negative value, with
asymptotes θ0 ∼ 2ψ−4/3

B or θ0 ∼ − 9
8 as ψB → 0. For values of ψB close to 3−3/4 we find

small-amplitude waves, with θ0 ∼ 9(1 − 3ψ4/3
B )/4.

3.1.2. Weakly nonlinear solution of the (4, 0) approximation. For small-amplitude solutions,
explicit approximate solutions can be found. Expanding (3.6) in powers of θ , assuming θ to
be small, we find

1
4ψ

4/3
B

(
dθ

dz

)2

= (1 − 3ψ4/3
B )θ(z)2 − 4

9θ(z)
3 (3.8)

which is solved by

θ(z) = 9
4 (1 − 3ψ4/3

B ) sech2

(
zψ

−2/3
B

√
1 − 3ψ4/3

B

)
. (3.9)

Thus the original problem has a one-parameter family of solutions which can be approximated
by w(z) = 31/4a1/2ψ(z)1/3 when 0 < 1 − 3ψ4/3

B � 1, giving

w(z) = 31/4ψ
1/3
B

[
1 + 9

4 (1 − 3ψ4/3
B ) sech2

(
zψ

−2/3
B

√
1 − 3ψ4/3

B

)]1/3

. (3.10)
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Figure 1. Graphs of the solitary-wave solution (3.10) for
ψ

4/3
B = 0.333, 0.3, 0.27, 0.24, 0.21, 0.18, 0.15, 0.12, 0.09,

0.06, 0.03. The quantity w(z)/31/4a1/2 = ψ(z)1/3 = 1/φ
is plotted against z for −5 < z < 5 for the value a = 1.

3.1.3. Periodic solutions of the (4, 0) approximation. Forψ4/3
B > 1

3 , no solitary-wave solution
with exponential decay in its tail exists, instead we look for the possibility of periodic solutions.
We substitute ψ(z) = ψB(1 + θ(z)) into (3.4) with B = ψB + ψ−1/3

B to look for solutions
which oscillate about ψ = ψB . Assuming θ(z) � 1, a weakly nonlinear expansion produces

1

12

d2θ

dz2
= −

(
1 − 1

3ψ
−4/3
B

)
θ(z)− 2

9ψ
−4/3
B θ(z)2. (3.11)

Equations of the form θ ′′ = Kθ + Lθ2 for K < 0 are solved by

θ(z) = 3Km

2L
√

1 −m +m2

cn

(
z
√−K

2(1 −m +m2)1/4
,m

)2

−
(

2m− 1 +
√

1 −m +m2

3m

)
(3.12)

where cn is the Jacobi elliptic function (see Abramowitz and Stegun [1] for details). This
formula (3.12) solves the equivalent first-order problem θ ′ 2 = C + Kθ2 + 2

3Lθ
3, for any

constant C. Hence (3.11) is solved by

θ(z) = 9 m(3ψ4/3
B − 1)

4
√

1 −m +m2

cn2

 z

√
3 − ψ

−4/3
B

(1 −m +m2)1/4
,m

−
(

2m− 1 +
√

1 −m +m2

3m

).
(3.13)

The solution in terms of the original variables, w(z), is then given by w(z) = 31/4ψ
1/3
B [1 +

θ(z)]1/3. This solution involves two parameters (m and ψB), and has been derived on the
basis of the amplitude of oscillation being small, that is m(3ψ4/3

B − 1) � 1. The solution is
sinusoidal for small values ofm, but if (3ψ4/3

B −1) � 1 then values ofm up to unity could also
be relevant. These have a longer period and a modified shape, which more closely resembles
a train of sech pulses rather than the sinusoidal oscillations which are approached in the limit
m → 0. Such situations are included in figure 2.
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Figure 2. Graphs of the periodic solution derived from (3.13) forψ4/3
B = 0.35,m = 0.1–0.9 in steps

of 0.1, together withm = 0.001. The plot is ofw(z)/31/4a1/2 = 1/φ = ψ(z)1/3 = ψ
1/3
B (1 + θ)1/3

against z for 0 � z � 25 in the case a = 1.

3.2. The (2, 2) Padé approximation

The (2, 2) Padé approximation (1.8) applied to equation (1.4) yields

− 1

12

d2φ

dz2
+ φ(z) +

1

φ(z)3
= Az + B (3.14)

after integrating twice with respect to z. We again restrict attention to the case A = 0, and use
phase plane techniques to analyse the behaviour of the system. The system (3.14) is equivalent
to

dφ

dz
= χ

dχ

dz
= 12(φ + φ−3 − B) (3.15)

which has a critical point at χ = 0, φ = φB where B = φB + φ−3
B . The eigenvalues of this

point are λ = ±2
√

3(1 − 3/φ4
B). Thus if |φB | > 31/4 then the critical point is a saddle giving

rise to solitary-wave solutions due to the smooth meeting of the unstable and stable manifolds;
if |φB | < 31/4 then the critical point is a centre, and we expect to find periodic solutions.

3.2.1. Pulse-like solution of the (2, 2) approximation. Equation (3.14) has a first integral

1

24

(
dφ

dz

)2

= 1
2φ(z)

2 − 1
2φ(z)

−2 − φBφ(z)− φ−3
B φ(z) + 1

2φ
2
B + 3

2φ
−2
B (3.16)

where the constant of integration has been set so that φ(z) → φB and φ′(z) → 0 as z → ±∞,
where B = φB + φ−3

B . To simplify the analysis of such a solitary wave, we transform from
φ(z) to θ(z) by the substitution φ(z) = φB(1 + θ(z)), yielding(

dθ

dz

)2

= 12θ(z)2

φ4
B [1 + θ(z)]2

[
φ4
Bθ(z)

2 + 2θ(z)(φ4
B − 1) + (φ4

B − 3)
] =: F(θ). (3.17)

Now θ(z), θ ′(z) → 0 as z → ±∞. Clearly the left-hand side of this expression (3.17) is
positive, and thus the right-hand side (i.e. F(θ)) must also be positive. This is satisfied for
small θ since F(0) = 0, F ′(0) = 0 and F ′′(0) > 0. However, at the maximum displacement
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Figure 3. Graphs of the solitary-wave solution (3.19) for
φ4
B = 3, 3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 6. The quantity
w(z)/31/4a1/2 = 1/φ(z) is plotted against z for −5 � z �
5 in the case a = 1.

of the solitary wave which we define as θ0 = θ(0) we must again have θ ′(0) = 0 and so
F(θ0) = 0. Thus θ0 is determined by solving F(θ0) = 0 with θ0 	= 0, which has two negative
roots, of which the larger (least negative) determines θ0, namely

θ0 = φ−4
B − 1 + φ−2

B

√
1 + φ−4

B . (3.18)

Solitary waves occupy the region θ0 � θ(z) � 0. Equation (3.17) can be solved implicitly,
giving z = z(θ)

±2
√

3z(θ) = log

∣∣∣∣∣∣
φ2
B

√
φ4
Bθ

2 + 2θ(φ4
B − 1) + (φ4

B − 3) + φ4
Bθ + (φ4

B − 1)√
1 + φ4

B

∣∣∣∣∣∣− φ2
B√

φ4
B − 3

× log

∣∣∣∣∣∣
√
φ4
B − 3

√
φ4
Bθ

2 + 2θ(φ4
B − 1) + (φ4

B − 3) + (φ4
B − 3) + θ(φ4

B − 1)

θ

√
1 + φ4

B

∣∣∣∣∣∣
(3.19)

and these curves are plotted in figure 3.

3.2.2. Weakly nonlinear solution of the (2, 2) approximation. When 0 < φ4
B − 3 � 1, the

amplitude θ0 is small and so weakly nonlinear analysis is once again appropriate. We thus
neglect O(θ4) terms which reduces equation (3.17) to(

dθ

dz

)2

= 12θ(z)2

φ4
B

[
(φ4
B − 3) + 4θ(z)

]
(3.20)

which can be solved explicitly by

θ(z) = − 1
4 (φ

4
B − 3) sech2

(
zφ−2

B

√
3(φ4

B − 3)

)
. (3.21)

This implies that the solution in our original variables w(z) is given by

w(z) = φ−1
B

[
1 − 1

4 (φ
4
B − 3) sech2

(
zφ−2

B

√
3(φ4

B − 3)

)]−1

(3.22)
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which overestimates the amplitude determined by the implicit solution (3.19); however, the
errors are vanishingly small in the small-amplitude limit.

3.2.3. Large-amplitude solution of the (2, 2) approximation. We now tackle the harder
problem of approximating the more strongly nonlinear problem of finding solitary waves of
larger amplitude. We return to the (2, 2) Padé formulation of the problem given in (3.17). For
large values of φB , equation (3.18) implies that the amplitude is given by

θ0 ∼ −1 +
1

φ2
B

. (3.23)

It is then possible to find the shape of the solution asymptotically, by rewriting (3.17) as(
dθ

dz

)2

= 12θ(z)2
(

1 − 3 + 2θ(z)

φ4
B[1 + θ(z)]2

)
. (3.24)

First we examine the ‘inner’ problem, that is the behaviour of the solution near its
maximum, by following the scaling for θ(z) suggested by (3.23) and substituting θ(z) =
−1 + ϕ(ζ )/φ2

B with ζ = z0z where z0 is to be determined. To leading order in 1/φ2
B we find

z2
0

12φ4
B

(
dϕ

dζ

)2

= 1 − 1

ϕ(z)2
. (3.25)

Thus the natural scaling for the independent variable is z0 = 2
√

3φ2
B , which leads to the inner

solution ϕ(ζ ) =
√

1 + ζ 2. In terms of the outer variable this can be written as

θ(z) = −1 +

√
1 + 12φ4

Bz
2

φ2
B

. (3.26)

To leading order in the outer variables this is θi(z) = −1+
√

12|z|. Thus in the outer variables,
the solitary wave appears to develop a corner as the maximum height of θ = −1 is approached.

We now turn to the ‘outer’ problem, away from the region where θ ∼ −1, the leading
order determining equation is (dθ/dz)2 = 12θ2, which is solved by θ(z) = K exp(±√

12 z)
in z ≶ 0 for some constant K . These two solutions match when K = −1, since a Taylor
expansion of θ(z) = − exp(−√

12|z|) for small z agrees with the inner solution expanded to
terms in the outer variables (the function θi(z) quoted above). In terms of the original variables,
the outer solution is

w(z) = 1

φ(z)
= φB

φ2
B − (φ2

B − 1)e−|z|√12
. (3.27)

3.2.4. Periodic solutions of the (2, 2) approximation. Finally, in our studies of the (2, 2) Padé
approximation, we note the existence of periodic waves when φ4

B < 3. In this case we again
use the substitution φ(z) = φB(1 + θ(z)), but now we assume that φ oscillates around φB so
that θ(z) takes both positive and negative values. A small-amplitude expansion of (3.14) gives

1

12

d2θ

dz2
= θ(z)

(
1 − 3

φ4
B

)
+

6θ(z)2

φ4
B

(3.28)

which is solved by the cnoidal wave (see 3.12)

θ(z) = −m(3 − φ4
B)

4
√

1 −m +m2

cn2

 z
√

3(3φ−4
B − 1)

(1 −m +m2)1/4
,m

−
(

2m− 1 +
√

1 −m +m2

3m

).
(3.29)
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The solution in terms of the original functionw(z) is then determined byw(z) = 1/φB(1+θ(z)).
Since the solution (3.29) was derived using a weakly nonlinear expansion, it is only valid for
small-amplitude waves. However, this does not simply mean smallm, where the waves reduce
to small perturbations of sinusoidal oscillations. For 0 < 3 − φ4

B � 1, even solutions with
larger m will have small amplitude, and thus display a longer time period and non-symmetric
oscillation.

3.3. The (4, 2) Padé approximation

Using the last and most accurate approximation from (1.8), our equation reduces to

φ(z)− 1

30

d2φ

dz2
+

1

φ(z)3
+

1

20

d2

dz2

(
1

φ3

)
= Az + B (3.30)

and, as in all previous analyses, we shall only consider the case A = 0. Both the (4, 0)
and the (2, 2) Padé approximations correctly handle fourth derivative terms, whereas this
approximation also includes the effects of sixth derivative terms correctly. We rewrite the
constant B as φB + 1/φ3

B , so that (3.30) can be rewritten as

1

60

d2φ

dz2

(
2 +

9

φ(z)4

)
− 3

5φ5

(
dφ

dz

)2

+ φB − φ(z) +
1

φ3
B

− 1

φ(z)3
= 0. (3.31)

Phase plane techniques then allow us to categorize the system’s behaviour into two cases: for
φ4
B > 3 we have a saddle point with a homoclinic trajectory joining the stable and unstable

manifolds of the saddle point, thus φ decays to φB exponentially in its tail and the homoclinic
trajectory corresponds to a single pulse-like solution; whenφ4

B < 3 there is a periodic wavetrain
which oscillates about φ = φB . In both cases the integrating factor 2 + 9/φ(z)4 enables the
first integral of (3.30) to be found

E = 1

120

(
dφ

dz

)2 (
2 +

9

φ(z)4

)2

− φ(z)2 +
11

2φ(z)2
+

3

2φ(z)6

+2φ(z)

(
φB +

1

φ3
B

)
− 3

φ(z)3

(
φB +

1

φ3
B

)
. (3.32)

The problem of finding the shape of the solitary wave or the nonlinear periodic wave now
reduces to finding the appropriate value for E and then carrying out quadrature.

3.3.1. Pulse-like solutions of the (4, 2) approximation. Following the techniques adopted
in the previous analyses, we substitute φ(z) = φB(1 + θ(z)), which implies that θ, θ ′ → 0
as z → ±∞. The critical value for E which generates a solitary-wave solution is found by
letting φ(z) → φB and φ′(z) → 0 in (3.32) yielding E = φ2

B + 9/2φ2
B − 3/2φ6

B . With this
value of E, equation (3.32) reduces to

1

120

(
dθ

dz

)2 (
2 +

9

φ4
B(1 + θ(z))4

)2

= θ(z)2
(

1 +
3 − 7θ(z)− 4θ(z)2

2φ4
B(1 + θ(z))3

− 3(3 + 3θ(z) + θ(z)2)2

2φ8
B(1 + θ(z))6

)
= : F(θ). (3.33)



5936 J A D Wattis

The next logical stage of the calculation is to find the amplitude of the solitary wave, θ0, by
solving F(θ0) = 0; unfortunately this is not possible since it yields a sixth-degree polynomial.
F(θ0) = 0 can, however, be solved implicitly for φ4

B as a function of θ0, giving

φ−4
B = (1 + θ0)

3

6(3 + 3θ0 + θ2
0 )

2

(
3 − 7θ0 − 4θ2

0 +
√

5(45 + 78θ0 + 77θ2
0 + 40θ3

0 + 8θ4
0 )

)
(3.34)

which can be plotted and shown to give a unique value of θ0 for each value of φB > 31/4. This
enables (3.33) to be rewritten as an integral for z = z(θ)

z(θ) = ±φ4
B

2
√

15

∫ θ0

θ

[2(1 + u)4 + 9φ−4
B ] du

u(1 + u)
√

2φ8
B(1 + u)6 + φ4

B(3 − 7u− 4u2)(1 + u)3 − 3(3 + 3u + u2)2
.

(3.35)

3.3.2. Weakly nonlinear solution of the (4, 2) approximation. Although it is not possible to
convert (3.35) into an explicit solution, we can find an explicit approximate solution when the
nonlinearity plays only a weak role in the behaviour of the system. In this limit, the right-hand
side of (3.33) can be replaced by the first two terms of its Taylor series for small θ , which leads
to (

dθ

dz

)2

= 60(φ4
B − 3) θ2

(2φ4
B + 9)

[
1 +

4θ(14φ4
B − 27)

(φ4
B − 3)(2φ4

B + 9)

]
. (3.36)

This equation is solved by

θ(z) = −(φ4
B − 3)(2φ4

B + 9)

4(14φ4
B − 27)

sech2

(
z

√
15

(
φ4
B − 3

2φ4
B + 9

))
. (3.37)

Plots of this function for a range of values of φB are shown in figure 4. Note that the more
accurate quasi-continuum approximation has yielded wider, smaller pulses than the other
weakly nonlinear solutions (3.9) and (3.22). This solution is closer to the fully nonlinear
solution (3.19) of the (2, 2) approximation pictured in figure 3 than the (4, 0) approximate
(3.10) graphed in figure 1.

3.3.3. Large-amplitude solution of the (4, 2) Padé approximation. We now turn to tackle
the more complex case where the waves are of larger amplitude, and hence suffer stronger
nonlinear influences. We consider the large-amplitude limit, where φB � 1, equation (3.33)
implies the amplitude θ0 = θ(0) is determined by

θ0 ∼ −1 +

( √
3√

3 +
√

5

)1/3
1

φ
4/3
B

. (3.38)

We first study the ‘outer’ problem, adopting the scaling of θ(z) = −1 + O(1), we find the
leading-order equation (dθ/dz)2 = 30θ2 from (3.33), which has the solution

θ(z) = − exp
(
−

√
30 (|z| − z0)

)
(3.39)

for some constant z0 > 0 which will be determined later through the procedure of asymptotic
matching as in section 3.2.3. The solution (3.39) cannot be globally valid, since it is not
differentiable at z = z0, and, whilst θ can approach −1, it can never equal −1. We assume
that the solution is even (ψ(−z) = ψ(z)), and consider its form in z � 0 only.
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Figure 4. Graphs of the solitary-wave solution (3.37)
for φ4

B = 3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 6. The quantity
w(z)/31/4a1/2 = 1/φ(z) is plotted against z for −9 �
z � 9 in the case a = 1.

The solution (3.39) is valid only, whilst θ remains an O(1) amount above −1; as z → z+
0

a new ‘intermediate’ region is entered. Expanding (3.39) for small z− z0 we find

θ(z) = −1 +
√

30(z− z0) as z → z+
0 (3.40)

so as to match with this, the intermediate region must be defined by θ(z) = −1 + ϕ(ζ )/φqB
with ζ = zφ

q

B . The exponent q is found by balancing terms in (3.33), leading to q = 1, and
providing the equation

1

120

(
dϕ

dζ

)2 (
2 +

9

ϕ4

)2

= 1 (3.41)

for ϕ(ζ ), which is solved implicitly by ζ(ϕ) = ζ0 ± (ϕ − 3/2ϕ3)/
√

30. In terms of the outer
variables, this can be written as

z(θ) = z0 ± 1√
30

(
1 + θ − 3

2φ4
B(1 + θ)3

)
. (3.42)

Matching the 1 + θ � 1/φB limit of (3.42) to the intermediate limit of the outer solution given
in (3.40) enables the constant ζ0 = z0φB to be assigned and the ± sign to be determined as
positive.

Clearly the solution (3.42) moderates the approach of θ to −1; however, a third region,
which we shall term the ‘inner’ region, is needed to account for the peak of the wave. Taking
the limit θ → −1 of (3.42), we find that in the matching region between the intermediate
region and the inner region we must have

θ = −1 +

( √
3

2
√

10φ4
B(z0 − z)

)1/3

. (3.43)

Following this scaling, which agrees with the expression for the amplitude given in (3.38), we
adopt the inner variables θ(z) = −1 + ϕ̂(̂ζ )/φ4/3

B with ζ̂ = z and thus derive

27

40

(
dϕ̂

dζ̂

)2

= ϕ̂2
(
ϕ̂6 + 3ϕ̂3 − 3

2

)
(3.44)



5938 J A D Wattis

from (3.33). Again, no explicit solution is available, only the implicit solution

ζ̂ (ϕ̂) =
√

27

40

∫ ϕ̂

ϕ̂0

dϕ̃

ϕ̃

√
ϕ̃6 + 3ϕ̃3 − 3

2

(3.45)

where ϕ̃0 is defined by ϕ̃0 = (
√

3/(
√

3+
√

5))1/3 from (3.38). The solution (3.45) has a smooth
peak, as can be seen by taking the limit ϕ̂ → ϕ̂0. The solution (3.45) also matches to (3.43)
as ϕ̂ → +∞, since

ζ̂ ∼ ζ̂0 −
√

3

2
√

10 ϕ̂3
as ϕ̂ → ∞ (3.46)

where

ζ̂0 =
(

3
√

3/2
√

10
) ∫ ∞

ϕ̂0

dϕ̃
/
ϕ̃

√
ϕ̃6 + 3ϕ̃3 − 3

2

which Maple evaluates as approximately 0.5493. Rewriting (3.46) in terms of the outer
variables yields (3.43) along with z0 = ζ̂0.

To summarize, the inner solution shows that the peak of the wave is differentiable and has
a zero derivative. The intermediate region shows that the width of the pulse is approximately
2z0 ≈ 1.10, as one would expect in a lattice equation where the nodes are spaced at unit
intervals. The outer solution shows exponential relaxation to the stable equilibrium solution
of φ = φB . Thus the method of matched asymptotic expansions enables us to approximate the
form of large-amplitude pulse solution for the (4, 2) Padé approximation, however, the added
accuracy of this approximation has the cost of a more complicated asymptotic structure than
the (2, 2) Padé approximation analysed earlier.

3.3.4. Periodic solutions of the (4, 2) approximation. In the case φ4
B < 3, substitution of

φ(z) = φB(1 + θ(z)) into (3.31) followed by an expansion for small θ leads to the equation

E

φ2
B

−
(

1 +
9

2φ4
B

− 3

2φ2
B

)
= 1

120

(
dθ

dz

)2 (
2 +

9

φ4
B

)2 (
1 − 72θ(z)

2φ4
B + 9

)
+
θ(z)2

2

(
2 +

9

φ4
B

)(
3

φ4
B

− 1

)
+

2θ(z)3

φ4
B

(
4 − 27

φ4
B

)
(3.47)

where E is a constant of integration. For small-amplitude disturbances θ(z), this formula has
the form Ẽ = θ ′ 2+ω2θ2, for some constant of integration Ẽ, indicating the existence of periodic
solutions. However, for larger-amplitude oscillations, correction terms of the form θ ′ 2θ as
well as θ3 are introduced. In previous approximations only the latter has appeared, leading to
waves which can be expressed in terms of the Jacobi cnoidal function. The additional θ ′ 2θ term
complicates the equation to an extent where it is not possible to write down an explicit solution
even in the weakly nonlinear case. At small amplitude, the periodic oscillations θ ∝ cos(ωz)
have frequency given by

ω = 2

√
15(3 − φ4

B)

2φ4
B + 9

. (3.48)

Thus in this section we have seen that the quasi-continuum approximation method produces
a sequence of approximate solutions for the equation referred to as case A in (1.4). These
approximate solutions are consistent in form, all producing periodic solutions in the case
φ4
B < 3 and single-pulse solitary waves in the case φ4

B > 3.
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3.3.5. Higher-order approximations. Even higher-order Padé approximates could be used,
but lead to higher-order differential equations, which cannot be analysed to the same level.
For example, in case A, the (6, 0), (4, 2) and (2, 4) Padé approximates yield the fourth-order
equations

1

360

d4

dz4

(
1

φ3

)
+

1

12

d2

dz2

(
1

φ3

)
+

1

φ3
+ φ = Az + B (3.49)

13

10 080

d4

dz4

(
1

φ3

)
+

d2

dz2

(
11

168φ3
− φ

56

)
+ φ +

1

φ3
= Az + B (3.50)

1

240

d4φ

dz4
− 1

12

d2φ

dz2
+ φ +

1

φ3
= Az + B (3.51)

in which the existence of the homoclinic connection is not easy to demonstrate since the phase
space is now four dimensional. Yet such a detailed analysis is essential to gain information on
the single-pulse solitary-wave solution.

4. Case B

We turn now to case B and again seek single-pulse solutions and periodic-wave solutions using
continuum methods to generate approximate solutions. The simplest continuum approximation
replaces the second difference operator by a second derivative to yield

d2φ

dz2

(
1 − 3

φ(z)4

)
+

12

φ(z)5

(
dφ

dz

)2

+
φ

a2
= 0. (4.1)

However, let us first analyse the differential-difference equation (1.5); we assume the existence
of a single-pulse solution of the form φ(z) = φ∞ +ψ(z) with ψ(z), ψ ′(z) → 0 as z → ±∞.
In this limit, and for φ∞ 	= 0, equation (1.5) leads to

φ∞
a2

+
ψ(z)

a2
+ ψ ′′(z) + δ2

(−3ψ(z)

φ4∞

)
= 0. (4.2)

By considering z → ±∞, we see that there is no non-zero value of φ∞ which satisfies (4.2).
Thus if a single-pulse solution exists it must satisfy φ(z) → 0 as z → ±∞. For special,
isolated values of the parameter a, it is possible to find an exact explicit solution for (1.5) in
the form of a single pulse. We return to the formulation given in (1.3), and note that a pulse
satisfying φ(z) → 0 as z → ±∞ corresponds to a solution in whichw(z) → ∞ as z → ±∞.
If we assume that a solution grows according to a power law,w(z) ∼ w0z

n as z → ∞, then the
only value of n which balances all the terms in (1.3) as z → ∞ is n = 2. Since the equation is
invariant under translations in z (z → z+z0), we assume a solution of the formw(z) = Az2 +C,
leading to A = − 1

10 , C = 1
8 (6a

2 − 1); equation (1.3) is then satisfied only if the parameter

a is a root of 7 − 120a2 + 450a4 = 0, yielding a2 = 1
30 [4 ± √

2] ≈ 0.180 47, 0.086 19. For
these special values of a, we have the explicit approximate solutions

w(z) = − 1
10 (z− z0)

2 − 1
40 (

√
2 + 1) if a2 = 1

30 (4 −
√

2) (4.3)

w(z) = − 1
10 (z− z0)

2 + 1
40 (

√
2 − 1) if a2 = 1

30 (4 +
√

2) (4.4)

valid in the large z−z0 regions. Only the first of these two is well defined in theφ-formulation of

the problem, since the latter contains divergences at z−z0 = ± 1
2

√
1 +

√
2 wherew(z) = 0. In

terms ofφ(z), the former’s shape is that of a single pulse which decays according toφ(z) ∼ z−2

as z → ±∞.
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Considering now the simplest continuum approximation (4.1) with the assumption
φ(z) → φB as z → ±∞, we immediately find φB = 0. In this case, (4.1) can be integrated to

a2

2

(
dφ

dz

)2 (
1 − 3

φ(z)4

)2

= E − 1
2φ(z)

2 − 3
2φ(z)

−2 (4.5)

for some constant of integration, E. Whatever value of E is chosen, a contradiction becomes
apparent in the limit z → ∞, since in this limit φ → 0 so the right-hand side is negative,
whereas the left-hand side must be positive since it is the product of squared terms. Thus no
pulse-type solution can exist in this continuum approximation of case B.

We turn now to the possible existence of nonlinear periodic-wave solutions of (4.1). Since
any such solution must also solve (4.5) we look for the maximum (φ = φ+) and minimum
(φ = φ−) values of a solution by putting dφ/dz = 0 in (4.5). This implies that φ± both satisfy
the equation

0 = φ4 − 2Eφ2 + 3. (4.6)

This quadratic has two real roots (φ2
± = E ± √

E2 − 3), thus for E >
√

3 there are real
distinct non-zero values for φ±. In particular, if put E = √

3 (1 + ε) with ε � 1, we find
φ2

± = √
3(1 ± √

2ε). This suggests the presence of oscillations around φ(z) = ±31/4, with

φ+ =
√√

3(1 +
√

2ε) and φ− =
√√

3(1 − √
2ε), hence we substitute φ = ±31/4(1 + θ(z))

with θ = O(ε1/2). When φ(z) = ±31/4, both the coefficient of φ′(z)2 in (4.5) and the
coefficient of φ′′(z) in (4.1) vanish, suggesting that oscillations around these points do not
have the usual sinusoidal shape that one would expect from a leading-order small-amplitude
expansion. Instead, at leading order we find ε = 2θ2 + 8a2θ2(θ ′)2, whose solution is

θ(z) = ±
√

2a2ε − (z− z0)2

4a2
. (4.7)

Positive and negative sections of this solution can be pieced together to form an oscillatory
solution whose gradient diverges in the limit θ → 0 (that is, at z− z0 = ±a√2ε).

θ(z) =



√
2a2ε − (z− z0 − 4an

√
2ε)2

4a2

if (4n− 1)a
√

2ε < z− z0 < (4n + 1)a
√

2ε for some n ∈ Z

−
√

2a2ε − (z− z0 − a(4n + 2)
√

2ε)2

4a2

if (4n + 1)a
√

2ε < z− z0 < (4n + 3)a
√

2ε for some n ∈ Z.

(4.8)

5. Conclusions

We have been able to analyse case A (1.2) using a variety of approximation techniques. The
standard continuum approximation yields no solution on the whole of z ∈ R. A similar result
was found when analysing case B (1.3) using the standard continuum approximation, namely
that no solution to the equation could be found. When higher-order continuum approximations
are applied to case B, its structure leads to more complicated approximating equations than
case A, since the resulting differential equations are of higher order than case A, and cannot
be solved explicitly.
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Figure 5. Graphs of the periodic-wave solution (from equation(4.8)) for case B; θ(z) is plotted
against z for a = 1, the larger-amplitude oscillation corresponding to ε = 0.2, and the smaller to
ε = 0.1.

Higher-order approximations of case B can be derived by using more accurate Padé
approximations to the second central difference, such as those quoted in (1.8) which generate
the (4, 0), the (2, 2) and the (4, 2) Padé approximate equations

0 = φ

a2
+

d2

dz2

(
φ +

1

φ3

)
+

1

12

d4

dz4

(
1

φ3

)
(5.1)

0 = φ

a2
+

d2

dz2

(
φ +

1

φ3

)
− 1

12a2

d2φ

dz2
− 1

12

d4φ

dz4
(5.2)

0 = φ

a2
+

d2

dz2

(
φ +

1

φ3

)
+

1

20

d4

dz4

(
1

φ3

)
− 1

30a2

d2φ

dz2
− 1

30

d4φ

dz4
(5.3)

respectively. Unfortunately it has so far proved impossible to make analytical progress with
these equations, since they are all fourth-order ordinary differential equations. However, direct
asymptotic analysis of case B has yielded a non-existence result for solitary-wave solutions for
general values of the parameter a. Hence it is unlikely that quasicontinuum approximations
will yield solitary-wave solutions. More accurate periodic-wave solutions may be obtainable
from (5.1)–(5.3), and it is expected that in the limit a � 1, the periodic-wave solutions of
cases A and B would be similar.

The more advanced, quasi-continuum approximation techniques are effective in case A,
and when one of the constants of integration is set to zero, solutions can be found. These are
explicit solutions in the case of weak nonlinearity and implicit solutions for the more general
cases of arbitrary nonlinearity. These methods include higher derivatives which account for
the discreteness and yield both pulse-type solitary-wave and periodic-wave solutions to the
equation. The most accurate quasi-continuum approximation (the (4, 2) Padé) yields broadly
similar results to the two simpler approximations (the (2, 2) and (4, 0) Padé). All three of the
higher-order quasi-continuum approximations yield a second-order autonomous system, which
can always be integrated to give the solution implicitly. Thus quasi-continuum approximations
are useful in illustrating the form of solutions in cases where a simple continuum limit produces
an insoluble equation.

Our results show that there is a critical value of the constant of integration B, namely
2, below which there are no non-trivial solutions. For values of B greater than 2, phase
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Figure 6. Graphs of the function w(z)/31/4a1/2 against z, for the case a = 1, φB = 3.51/4. In
increasing amplitude, the curves are the weakly nonlinear (4, 0) approximation (3.10), the weakly
nonlinear (4, 2) approximation (3.37), the full (2, 2) approximation (3.19) and the weakly nonlinear
(2, 2) approximation (3.22).

plane analysis shows the existence of two critical points, one of which is a centre and the
other a saddle. Periodic solutions correspond to oscillations around the centre, and there is
a saddle with a homoclinic connection corresponding to a pulse-type solitary-wave solution.
Our analysis has concentrated on the two cases φB < 31/4 and φB > 31/4 separately, where
B = φB +φ−3

B . Yet for any given value ofB, there are two values of φB satisfying this equation,
one lying either side of 31/4. Thus the centre and saddle exist in the same system, as illustrated
in figure 7.

A comparison of the various methods is shown in figure 6. This shows that the largest-
amplitude approximation is the weakly nonlinear (2, 2) Padé approximation (3.22); the
smallest-amplitude waves are the weakly nonlinear (4, 0)Padé and (4, 2)Padé approximations,
(equations (3.10) and (3.37), respectively). Of these two, although the (4, 2) Padé is slightly
larger, the (4, 0) Padé is slightly wider. Between the three weakly nonlinear solutions is the
full (2, 2) Padé approximation, which we expect to be more accurate, since it accounts for
the full nonlinearity. Comparison with numerical work has been made previously, Eilbeck
and Flesch [5] have constructed sophisticated numerical solutions to such differential delay
equations in the past, and quasi-continuum approximations tested against them demonstrating
the accuracy of the method [14]. The ability to resolve subtle, higher-order, effects has also
been reported, for example anisotropy in multi-dimensional lattices, where numerical work of
Eilbeck [4] can be compared with quasi-continuum results [15].

The existence of solutions to quasi-continuum approximations does not rigorously prove
the existence of solutions to the original system, but they do give a strong indication of the
form of solutions assuming existence. They are thus useful for providing initial estimates for
numerical schemes should a highly accurate numerical solution of the equations be desired.
Rigorous existence results are available [9], and we have modified these results to show how
they may be applied to the cases under consideration here. We have not addressed the stability
of the waves, but numerical work on travelling waves in FPU lattices suggest they are stable
[7]. The rigorous work of [9] is currently been extended by Friesecke and Pego [8] with the
aim of analysing stability. These methods rely on the variational formulation of the problem,
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Figure 7. Graphs of the constant B = φB + φ−3
B against the position of critical point φB (thick

curve); indicating that when φB < 31/4 ≈ 1.3 the critical point at φ = φB is a centre and has
periodic trajectories encircling it; and when φB > 31/4 the critical point at φ = φB is a saddle with
a homoclinic connection which encircles the other solution of B = φB + φ−3

B .

which can itself be used to generate approximate solutions; see, for example, Duncan and
Wattis [3] for details.

Our large-amplitude asymptotic approximations to solitary waves have elucidated the
approach of solitary waves to a limiting form which has a corner at the wave’s peak. This
behaviour has been noted before, most famously in the Stokes waves of maximum amplitude
[18], but also in similar lattice systems, for example, the experimental electrical transmission
lattice of Remoissenet and Michaux [12] for which solitary waves with corners have been
calculated numerically by Eilbeck [4]. We have constructed matched asymptotic expansions
of the waves in this strongly nonlinear regime, and so elucidated the manner in which this
special solution is approached.
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